2nd year Objective Statistics Past Paper Gujranwala Board 2018

Statistics (No Time: 20 Mi	nutes	(INTER PART II <u>Code: 818</u> OBJECTIV	www.pakci	
Note: Yo cot two	u have four choices for ea rect, fill that circle in from o more circles will result estion paper and leave of	ach objective type question at of that question number in zero mark in that quest hers blank.	n as A, B, C and D. The ch	oice which you think is the circles. Cutting or tilling tions as given in objective to a
1-1-N	formal distribution have	e parameters (B) four	(C) two	(I)) one
(ibution mean and varian	nce respectively are	
		(B) 0 & 3	(C) 0 & 5	(D) 0 & 2
3- 1	Mean and variance of a (Λ) n, np	normal distribution are (B) np. npq	(() μ. υ	(D) μ.σ
4-	Number of observation	s falling in a sample are	called	(D) sample design
	(A) sample size		(C) sample frame	- La Contractor Inni - La Contra
5-	If sampling is done wit	h replacement then tota	l number of possible sam	pies are
	(A) N^n	(B) ^N C _n	(C) ^N _p	(D) Nn
6-	$ \mu_{\overline{x}} = \mu $ if sampling is (A) with replacement	(B) without replacer	ment (C) both A and B	(D) neither A net 13
7-	Any hypothesis which	is accepted when null I	hypothesis is rejected is c	(D) statistical
	(A) simple	(B) composite	(C) alternative	(1)) ((1))
8-		g H _o when actually it is (B) β error	s true is called (C) level of confide	nce (D) level of signate.
	(A) α error	nd single value then it is	; called	
9-	(A) interval estimati(C) confidence inter	on val	(B) point estimation(D) interval estimator	
10-	The dependance of o	ne variable to another va	ariable is called	-
10-	(A) regression	(B) correlation	(C) association	(D) regressor
11-	Correlation co-efficient (A) -1 and +1	ent always lies between (B) 0 and 1	∞ to ∞ (O)	(D) 3 and -3
	(A) -1 and -1	ween two quantitative v	variables is called	
12-	(A) correlation	(B) regression	(C) association	(D) estimation
13-	(A) $(XY) \neq \frac{(X)(Y)}{(XY)}$	$\frac{1}{n} (B) (XY) = \frac{(X)(Y)}{n}$	2 (C) (X)(Y) > 2	$\frac{(\mathbf{Y})}{n} \qquad (\mathbf{D}) (\mathbf{X}\mathbf{Y}) < \frac{(\mathbf{N})^n}{n}$
14-	Chi-square test is $m(\Lambda) = 10$	(B) 5	frequency is less than (C) 3	(D) 15
15-	The graph of time s (Λ) histogram	(B) historigram	(C) ogive	(D) pre-diagram
16-	Damages due to flo	oods, strikes and fires ar (B) regular	(•)	(D) cyclical
17-	Computers which a (A) super	are commonly used in o (B) digital	offices are called (C) analog	(D) hybrid 330-(1)-418-65

Statistics (New Scheme) Time: 2:40 Hours

SUBJECTIVE

(INTER PART II)-418

Note: Section I is compulsory. Attempt any Three (3) questions from Section II.

SECTION I

Write short answers to any Eight questions: 2.

- i- What are the values of two constants e and π in the equation of normal distribution?
- ii- In normal distribution mean = 40, find median and mode.

www.pakcity.org

- iii- What is relation between binomial distribution and normal distribution?
- iv- Write the equation of normal distribution with mean = 30 and SD = 10.
- v- If X is N(25, 25) find the value of maximum ordinate.
- vi- Define biased estimator.
- vii- Define confidence limits.
- viii- Define level of significance.
 - ix- Define region of acceptance.
 - x- What is meant by critical region?
 - xi- Define hardware and software.
- xii- What is CPU?

Write short answers to any Eight questions: 3.

- i- Write any two advantages of sampling.
- What is the term bias in sampling? ii-
- iii- Explain the term probability sampling.

iv- Give
$$\pi_1 = \frac{2}{3}$$
, $n_1 = 2$ and $\pi_2 = \frac{1}{2}$, $n_2 = 2$. Find $var\left(\hat{p}_1 - \hat{p}_2\right)$

v- Find $\sigma_{\overline{x}}^2$ if N = 6, n = 2 σ = 4. For sampling with and without replacement.

- vi- Write any two purposes of sampling.
- vii- Given $b_{yx} = -1.4$ and $b_{xy} = -0.87$. Find (r).
- Give two properties of coefficient of correlation. viii-

ix- Given n = 15,
$$S_x = 7.933$$
, $S_y = 16.627 \sum (x-x)(y-y) = 148$ compute b_{yx} .

- x- Define independent variable in regression model.
- xi- Sketch scatter diagram indicating positive correlation.
- xii- What is meant by residual (error) in regression model?

Write short answers to any SIX questions: 4.

- i- Define association of attributes.
- ii- What is Rank correlation?
- iii- What is ultimate class frequency?
- iv- What is order of the class?
- v- Determine whether two attributes are independent or associated N = 1024, (A) = 144, (B) = 384, (AB) = 54
- vi- Define historigram.
- vii- What is meant by analysis of time series?
- viji- Define secular trend.
- ix- Give two examples of seasonal movements.

SECTION II

- (a) In a normal distribution $\mu = 20$ and $\sigma^2 = 16$. Find two points containing the 5middle 90 % area.
 - (b) In a normal distribution lower and upper quartiles are 25 and 35. Find the probability that (i) $P(X \le 19)$ (ii) $P(X \le 35)$

 $(2 \times 8 - 16)$

 $(2 \times 6 = 12)$

. 5

1.1

PAPER: 11 Marks: 68

 $(2 \times 8 = 16)$

(2) www.pakcity.org

- 6- (a) If the mean and variance of a population are 20 and 4 respectively. What would be the mean and S.E(x) if the samples are drawn with replacement of size 5.
 - (b) Draw all possible samples of size 3 without replacement from population i.e. 2, 4, 5, 7, 10.
 Find the sample proportion (p) of prime numbers in each sample. Verify that
 - (i) $\mu_{\hat{p}} = P$ and $\sigma_{\hat{p}}^2 = \frac{Pq}{n} \cdot \frac{N-n}{N-1}$
- 7- (a) Calculate 95 % confidence interval for population mean. Given that $\sigma^2 = 49$, n = 25, $\overline{X} = 83$
 - (b) A basket ball player has hit on 80 % of his shots from the floor. If on the next 100 shots he makes 70 baskets, would you say that his shooting has improved $\alpha = 5 \%$
- 8- (a) Given the following information:

n = 15, x = 25, y = 18,
$$\sum (x - \bar{x})^2 = 136$$
, $\sum (y - \bar{y})^2 = 138$
 $\sum (x - \bar{x})(y - \bar{y}) = 122$

Compute the regression line Y on X and estimate Y when X = 24

- (b) Compute the coefficient of correlation between X and Y for the information given in part (a)
- 9- (a) The following table gives the condition at home and condition of the children:

Condition of	Condition at home		
children	Clean	Not elean	
Clean	175	143	
Fairly clean	136	116	
Dirty	125	145	

Test for the association between the condition at home and condition of children.

(b) Compute 3-years moving average from the data given below:

Years	1992	1993	1994	1995	1996
Sales	2.4	2.8	3	3.5	4

1